

Introduction

coltrane is a Dynamic Site Generator that harnesses the power of Django without the hassle. It can also be used to build a static HTML site or as a third-party Django app.

⭐ Features

	Render markdown files as HTML with automatic URL routing based on the filesystem

	Local development server with live re-rendering of markdown and data

	Use JSON files as data sources in content

	Automatic generation of sitemap.xml and rss.xml files

	Can serve non-markdown files like robots.txt

	Deployment best practices with whitenoise and gunicorn already configured

	Leverage custom or built-in Django template tags and filters

	Include any third-party Django app[#1] for additional functionality

	Optional building of static HTML files

🙋 What is a Dynamic Site Generator?

coltrane is similar to a static site generator – it takes markdown content and renders it as HTML. However, it also provides an opinionated framework for building dynamic websites.

Examples in the wild

	GitEgo[#2]: An egocentric view of GitHub

	python-utils[#3]: Interactive Python playground

	unsuckjs.com[#4]: Libraries to progressively enhance HTML with minimal amounts of JavaScript

Note

Please let me know[#5] if you use coltrane and would like to add it to this list!

🎵 What’s with the name?

coltrane is built on top of the Django web framework, which is named after Django Reinhardt[#6]. This framework is named after John Coltrane[#7], another (more avant-garde 🎶) jazz musician.

🙏 Inspiration

https://twitter.com/willmcgugan/status/1477283879841157123 for the initial inspiration and my reaction https://twitter.com/adamghill/status/1477414858396164096.

⚙️ Dependencies

	https://github.com/adamchainz/django-browser-reload for development server live reloads

	https://github.com/boxed/django-fastdev to ensure template variables are available

	https://github.com/lepture/mistune for doing the hard work of rendering the markdown

	https://www.djangoproject.com for doing the hard work of everything else

🎉 Other minimal Django projects

	https://github.com/wsvincent/django-microframework for the app.py idea

	https://olifante.blogs.com/covil/2010/04/minimal-django.html

	https://simonwillison.net/2009/May/19/djng/

	https://stackoverflow.com/questions/1297873/how-do-i-write-a-single-file-django-application

	https://github.com/pauloxnet/uDjango

🧠 Related projects

yamdl[#8] is another approach which lets you store instances of Django models as flat YAML files. It also supports storing markdown.

Here are a few Python static site generators:

	Pelican[#9]: Pelican is a static site generator that requires no database or server-side logic.

	Combine[#10]: Build a straightforward marketing or documentation website with the power of Jinja.

	Nikola[#11]: In goes content, out comes a website, ready to deploy.

	Lektor[#12]: A flexible and powerful static content management system for building complex and beautiful websites out of flat files.

	corvid[#13]: An opinionated simple static site generator.

	jamstack[#14]: The easiest way to create jamstack sites, as simple or as complex as you like.

Footnotes

[#1]
https://djangopackages.org

[#2]
https://adamghill.com/gitego

[#3]
https://adamghill.com/python-utils

[#4]
https://unsuckjs.com

[#5]
https://github.com/adamghill/coltrane/discussions/new?category=show-and-tell

[#6]
https://en.wikipedia.org/wiki/Django_Reinhardt

[#7]
https://en.wikipedia.org/wiki/John_Coltrane

[#8]
https://github.com/andrewgodwin/yamdl

[#9]
https://getpelican.com/

[#10]
https://combine.dropseed.dev/

[#11]
https://getnikola.com/

[#12]
https://www.getlektor.com/

[#13]
https://github.com/di/corvid

[#14]
https://github.com/Abdur-RahmaanJ/jamstack

Installation

	mkdir new-site && cd new-site to create a new folder

	poetry init --no-interaction --dependency 'coltrane:<1' && poetry install to create a new virtual environment and install the coltrane package

	Optional: brew install watchman on MacOS for less resource-intensive local development server

Extras

coltrane has some additional functionality that is not enabled by default. To add an extra to an existing Poetry project use square brackets, e.g. poetry add coltrane[json5]. To install multiple extras separate them with commas, e.g. poetry add coltrane[deploy,json5]

json5

Adds support for using JSON5[#1] for data files. This allows trailing commas and comments in JSON, so it can be useful for making JSON a little more readable.

deploy

Adds support for deploying coltrane to a production server with gunicorn and whitenoise pre-configured. More details at deployment.md.

Footnotes

[#1]
https://json5.org

Local Development

markdown files are rendered into HTML dynamically based on the URL that is requested.

Create a new site

poetry run coltrane create creates the folder structure for a new site.

Note

More details about the create options and the files that are generated are in CLI.

Development server

poetry run coltrane play serves the content for local development.

Warning

poetry run coltrane play is fine for development, but should never be used in production.

Footnotes

Content

coltrane is designed around content. There are no URL routes to configure or views (if you are used to Django) or controllers (if you are used to other MVC frameworks) to create. coltrane automatically routes URLs to the correct content based on where the files exist on the filesystem. markdown files will get converted to HTML for rendering. HTML template files can also be served directly for more control.

Markdown

Add markdown files (or sub-directories with markdown files) to the content directory and rendered HTML will be accessible via auto-generated routes. index.md would be used similarly to index.html.

	/ would convert the markdown in content/index.md and render is as HTML

	/about/ would convert the markdown in content/about.md and render it as HTML

	/articles/ would convert the markdown in /content/articles/index.md and render it as HTML

	/articles/this-is-the-first-article/ would convert the markdown in /content/articles/this-is-the-first-article.md and render it as HTML

	/not-there/ would 404

Frontmatter

YAML before the actual markdown content is supported. Any keys and their values will be added to the context variable that is used when rendering the HTML. The default base.html template will use lang (to specify the HTML language; defaults to “en”), and title variables if they are specified in the frontmatter.

template

Used to specify a custom template that Django will use to render the markdown.

content/index.md

lang: en
title: This is a good title
template: another_app/new-template.html
adjective: perfect

This is sample text

another_app/new-template.html

<title>{{ title }}</title>

{{ content }} and it's {{ adjective }}

Generated HTML

<title>This is a good title</title>

<p>This is sample text and it's perfect</p>

HTML

If a markdown file can not be found for the based on the URL’s slug, but there is an HTML file with the same slug in the templates directory the HTML template will be rendered.

	/app/ would render the HTML in /templates/app.html or /templates/app/index.html

Wildcards

A filename with an asterisk can be used as a “wildcard” and will be served for any slug that does not have a matching markdown or specific HTML template file.

	/app/some-user would render the HTML from /templates/app/*.html

Directories can also be a wildcard to handle a specific part of a slug.

	/app/some-user would render the HTML from (in priority order) /templates/app/some-user.html or /templates/app/*.html or /templates/*/some-user.html or /templates/*/*.html

	/app/another-user would render the HTML from (in priority order) /templates/app/another-user.html or /templates/app/*.html or /templates/*/another-user.html or /templates/*/*.html

Footnotes

Templates

coltrane comes with two minimal templates that get used by default: coltrane/base.html and coltrane/content.html. Overriding those templates works just like in Django.

Override included templates

coltrane/base.html

Create a file named templates/coltrane/base.html in your app to override the base template. By default, it needs to include a content block.

{% block content %}{% endblock content %}

coltrane/content.html

Create a file named templates/coltrane/content.html in your app to override the content template. By default, it needs to include a content block for the base template and {{ content }} to render the markdown.

Note

The content template variable is already marked “safe” so you do not need to use the safe filter.

{% block content %}{{ content }}{% endblock content %}

Custom template

Specify a custom template with a template variable in the markdown frontmatter.

content/index.md

title: This is good content
template: sample_app/new-template.html

Heading 1

This will use sample_app/new-template.html to render content.

sample_app/new-template.html

<title>{{ title }}</title>

{{ content }}

Generated HTML

<title>This is good content</title>

<h1 id="heading-1">Heading 1</h1>

<p>This will use sample_app/new-template.html to render content.</p>

Footnotes

Template tags

Template tags are the way for Django templates to use Python code. Django has a large list of built-in template tags[#1] for everything from looping over objects, date formatting, boolean logic with if/else blocks, or getting the length of an object. By default, all template tags in Django are available in markdown content files.

Humanize template tags

django.contrib.humanize includes a useful template tags[#2] to format numbers and dates in human-friendly ways. Normally it needs to be enabled and loaded in templates manually, but coltrane enables it by default so it is available to use in markdown content files automatically.

Coltrane template tags

directory_contents

A list of the content at a particular directory.

List markdown files based on the request path

If the request url is https://localhost:8000/ and there are these files:

	content/test1.md

	content/test2.md

Contents

{% directory_contents as directory_contents %}

{% for content in directory_contents %}

- {{ content.slug }}

{% endfor %}

<h1 id="contents">Contents</h1>

 test1
 test2

List markdown files based on a particular directory

If the request url is https://localhost:8000/ and there are these files:

	content/articles/article1.md

	content/articles/article2.md

Articles

{% directory_contents 'articles' as directory_contents %}

{% for content in directory_contents %}

- {{ content.slug }}

{% endfor %}

<h1 id='articles'>Articles</h1>

 article1
 article2

Exclude a slug from being included

If the request url is https://localhost:8000/ and there are these files:

	content/articles/article1.md

	content/articles/article2.md

Articles

{% directory_contents 'articles' exclude='article1' as directory_contents %}

{% for content in directory_contents %}

- {{ content.slug }}

{% endfor %}

<h1 id="articles">Articles</h1>

 article2

Sort the results of the directory

The order_by kwarg will sort the results by a particular key. Available keys are slug, now, and anything in the YAML frontmatter. All keys will be coerced to strings and if a key is missing an empty string will be used by default.

If the request url is https://localhost:8000/ and these files are present in the content directory:

	content/article1.md

	content/article2.md

Sorted Articles

{% directory_contents order_by='slug' as directory_contents %}

{% for content in directory_contents %}

- {{ content.slug }}

{% endfor %}

<h1 id="sorted-articles">Sorted Articles</h1>

 article1
 article2

Reverse Sorted Articles

{% directory_contents order_by='-slug' as directory_contents %}

{% for content in directory_contents %}

- {{ content.slug }}

{% endfor %}

<h1 id="reverse-sorted-articles">Reverse Sorted Articles</h1>

 article2
 article1

include_md

Similar to the include[#3] template tag, but can be used to include a markdown file and have it render correctly into HTML. It can be used in markdown files or in HTML templates.

include_md

{% include_md '_partial.md' %}

<h1>include_md</h1>

{% include_md '_partial.md' %}

parent

A filter that returns the parent directory for a particular path. Can be passed a request or a string.

<!-- request of http://localhost/articles/some-article -->
{{ request|parent }} == '/articles'

{{ 'http://localhost/articles/some-article'|parent|parent }} == ''

to_html

Convert raw markdown text to html. This is probably the most useful when using coltrane as a Django app.

views.py

def my_view(request):
 markdown_text = """---
title: Article 1

{{ title }}
"""
 ...

my_template.html

<main>
 {{ markdown_text|to_html }}
</main>

Rendered html content

<main>
 <h1>Article 1</h1>
</main>

raise_404

Raises a 404 from template. Can be useful when using wildcard HTML templates.

last_path

Gets the last portion the URL path, e.g. the last path of /app/user/123 would be "123".

paths

Gets all parts of the path as a list of strings, e.g. the paths of /app/user/123 would be ["app", "user", "123"].

Custom template tags

coltrane will automatically enable any template tags it finds in the templatetags directory to be used in markdown or HTML templates.

templatetags/custom_tags.py

from django import template

register = template.Library()

@register.filter(name="test")
def test(value, arg):
 return value + " is a test"

content/index.md

{{ 'This'|test }}

Generated index.html

This is a test

Footnotes

[#1]
https://docs.djangoproject.com/en/stable/ref/templates/builtins/

[#2]
https://docs.djangoproject.com/en/stable/ref/contrib/humanize/

[#3]
https://docs.djangoproject.com/en/stable/ref/templates/builtins/#include

Context

The template context for each markdown file includes:

	all key/value pairs in the markdown frontmatter

	rendered markdown HTML in content

	JSON data from the data directory

	now which provides the current datetime (would be the time of HTML rendering for when generating a static site)

	request which provides the current request

	debug which contains the DEBUG setting (or if INTERNAL_IPS has the current request’s IP)

	slug which contains the current file’s “slug” (e.g. articles/some-new-article if there was a markdown file at content/articles/some-new-article.md)

	toc which is an automatically generated table of contents rendered as HTML

	if publish_date is found, it is converted to a Python datetime instance using the excellent dateparser[#1] library

Example context

data/index.json

{ "test": "Great" }

content/index.md

this_is_a_variable: This is a good test
template: some_app/custom-template.html
publish_date: 2022-02-26 10:26:02

{{ this_is_a_variable }}

Data from JSON files: {{ data.index.test }}

Current datetime: {{ now }}

Publish date: {{ publish_date|naturalday }}

some_app/templates/some_app/custom-template.html

{{ content }}

Generated index.html

<p>This is a good test</p>

<p>Data from JSON files: Great</p>

<p>Current datetime: 8 Jan. 11, 2022, 10:02 p.m.</p>

<p>Publish date: Feb. 26, 2022</p>

Footnotes

[#1]
https://dateparser.readthedocs.io/en/latest/

Data

coltrane is designed to be used without a database, however, sometimes it’s useful to have access to data inside your templates.

JSON data directory

Create a directory named data in your project folder (if it doesn’t already exist) and add JSON files. The name of the file (without the json extension) will be used as the key in the context data.

If there are JSON files in sub-directories, the directory names will be included in the dictionary hierarchy.

data/author.json

{
 {"name": "Douglas Adams"}
}

data/books/book.json

{
 {"title": "The Hitchhiker's Guide to the Galaxy"}
}

content/index.md

index

{{ data.author.name }} is the author.

{{ data.books.book.title }} is the book title.

Generated index.html

<h1 id="index">index</h1>

<p>Douglas Adams is the author.</p>

<p>The Hitchhiker's Guide to the Galaxy is the book title.</p>

JSON5 support

JSON5[#1] data files are supported if the json5 extra is installed and the COLTRANE_JSON5_DATA environment setting is set to True.

Footnotes

[#1]
https://json5.org

Static Files

Django handles static files (e.g. CSS, JavaScript, and images) already which coltrane leverages as part of the record command. The collectstatic management command[#1] is used to copy all static files to the output/static directory.

Referring to static assets

Instead of hardcoding the URL path to static assets, the static template tag should be used in either markdown or HTML templates.

Note

Using the static template tag might feel unnecessary for simpler sites, but it will automatically use hashed file names that whitenoise provides for efficient serving and caching of static files.

content/index.md

![music note]({% static 'images/music-note.svg' %})

Generated index.html

templates/custom/custom-template.html

<link src="{% static 'css/styles.css' %}" />

Generated HTML

<link src="/static/css/styles.wxyz789.css" />

Footnotes

[#1]
https://docs.djangoproject.com/en/stable/ref/contrib/staticfiles/#collectstatic

Sitemap

sitemap.xml is a standard for search engines to find content on your site. coltrane automatically provides a URL route for sitemap.xml and will create the file when building a static site.

Django app configuration

When using coltrane as a Django app, the sitemap will need to be configured.

Footnotes

RSS

coltrane automatically creates an rss.xml file containing all markdown content. It will be served from the /rss.xml URL or output into the output directory for static sites.

Required setting

RSS requires an absolute URL so coltrane needs to know the domain for the site.

COLTRANE_SITE_URL needs to be set in the .env file.

Django app configuration

When using coltrane as a Django app, RSS will need to be configured.

Footnotes

Deployment

coltrane can be installed with deployment features for production by installing the deploy extras.

poetry add coltrane -E deploy

Note

If using pip you can do something like: pip install coltrane[deploy].

Required settings

	DEBUG should be False (more details in Django docs[#1]).

	ALLOWED_HOSTS must be set to the acceptable host or domain names (more details in Django docs[#2]).

DEBUG=False
ALLOWED_HOSTS=coltrane.com,www.coltrane.com

Gunicorn

gunicorn[#3] is a production WSGI server and is perfect for serving coltrane apps.

An example command for using gunicorn in production: poetry run gunicorn -b localhost:8000 app:wsgi.

Whitenoise

whitenoise[#4] allows regular WSGI servers to serve static files without needing to move assets to S3 or another hosted file platform. It will be configured automatically when DEBUG is set to False.

Hosting

Docker

A sample Dockerfile is created for new Coltrane projects. It can be used along with gunicorn.conf.py for any hosting platform that supports Docker.

Heroku

Heroku will run the collectstatic management command by default for Django projects, but this should be disabled by setting the DISABLE_COLLECTSTATIC environment variable to 1. Add the nginx buildpack from https://buildpack-registry.s3.amazonaws.com/buildpacks/heroku-community/nginx.tgz.

Then, add the following files so that nginx will serve the static files efficiently.

gunicorn.conf.py

def when_ready(server):
 # touch app-initialized when ready
 open("/tmp/app-initialized", "w").close()

bind = "unix:///tmp/nginx.socket"
workers = 3

Procfile

web: python app.py collectstatic --noinput && bin/start-nginx gunicorn -c gunicorn.conf.py app:wsgi

render.com[#5]

	Set the PYTHON_VERSION environment variable to the desired Python version (must be at least 3.8)

[image: Render.com Python version]

	Go to settings and use pip install poetry && poetry install && poetry run coltrane build for the Build Command

[image: Render.com build command]

Footnotes

[#1]
https://docs.djangoproject.com/en/stable/ref/settings/#debug

[#2]
https://docs.djangoproject.com/en/stable/ref/settings/#allowed-hosts

[#3]
https://gunicorn.org

[#4]
https://whitenoise.evans.io/

[#5]
http://render.com

CLI

Create

poetry run coltrane create sets up a default coltrane project.

Generated files

.
├── .env
├── .gitignore
├── .watchmanconfig
├── __init__.py
├── app.py
├── content
│ └── index.md
├── data
├── Dockerfile
├── gunicorn.conf.py
├── templates
├── poetry.lock
└── pyproject.toml

.env

Example environment variables.

.gitignore

Prevent committing certain files.

.watchmanconfig

Prevent node_modules directory from triggering excessive restarts of the development server.

__init__.py

Denote the folder is a Python module.

app.py

The entry point for coltrane apps. Similar to a standard manage.py file in Django.

content

Standard directory for markdown files.

data

Standard directory for JSON files.

Dockerfile

Example Dockerfile for deployment.

gunicorn.conf.py

Example gunicorn.conf.py for deployment.

templates

Standard directory for HTML template files.

poetry.lock

Lock file for dependencies.

pyproject.toml

Lists dependencies. More details in the Poetry documentation[#1].

Force creation

poetry run coltrane create --force

Force the creation of a new coltrane site even if there is an existing one.

Play

poetry run coltrane play

Starts a development webserver to render the markdown files into HTML. Defaults to 127.0.0.1:8000.

Port

The port to use rather than the default 8000.

poetry run coltrane play --port 8001 would start the development server at 127.0.0.1:8001.

Record

poetry run coltrane record

Builds the static site from markdown content and stores the HTML in the output directory. Stores static files in the output/static/ directory.

Incremental builds

By default, coltrane will only build markdown files that have changed since the last build. To force re-building all files use --force.

poetry run coltrane record --force

Output directory

By default coltrane will write all files to a directory named output. But, that can be overriden with --output.

poetry run coltrane record --output public

Multithreaded

By default coltrane tries to use the optimal number of threads. But, the number of threads to use can be overriden with --threads.

poetry run coltrane record --threads 2

Ignore errors

By default coltrane will exit with a status code of 1 if there is an error while rendering the markdown into HTML. Those errors can be ignore with --ignore.

poetry run coltrane record --ignore

Footnotes

[#1]
https://python-poetry.org/docs/pyproject/

Environment

For local web development coltrane uses an .env file in the base directory for potentially sensitive settings. When deployed to production, those settings would be retrieved from environment variables (following the 12-factor app[#1] method).

Example .env file

DEBUG=True
INTERNAL_IPS=127.0.0.1
ALLOWED_HOSTS=example.com
COLTRANE_SITE_URL=https://example.com
SECRET_KEY=this-should-be-lots-of-random-characters

Keys

DEBUG

Whether the server is in debug mode or not. Error tracebacks, context, and sensitive information is displayed on the error page when this is set to True, so it should always be set to False when the app is deployed to production. Defaults to True for local development purposes.

INTERNAL_IPS

Used to determine if the current request is internal or not. Must be set for the debug template variable to be populated (more information in the Django documentation[#2]). Defaults to 127.0.0.1. If more than one IP is required, separate them by commas.

INTERNAL_IPS=127.0.0.1,localhost,192.168.0.1

SECRET_KEY

A random string of letters, numbers, and characters. (More information in the Django documentation[#3]. Generated automatically when the .env file is created. Required.

ALLOWED_HOSTS

The acceptable host or domain names when the site is deployed to production. Required when DEBUG is set to False. Defaults to "". If more than one host name is required, separate them by commas.

ALLOWED_HOSTS=coltrane.com

COLTRANE_SITE_URL

The hosting domain’s scheme and domain. Required.

COLTRANE_SITE_URL=https://coltrane.com

COLTRANE_TITLE

The title of the website. Required for generating rss.xml.

COLTRANE_TITLE=Coltrane

COLTRANE_DESCRIPTION

The description of the website. Required for generating rss.xml.

COLTRANE_DESCRIPTION=A simple content site framework that harnesses the power of Django without the hassle.

COLTRANE_IS_SECURE

Informs coltrane that it is served securely, i.e. with SSL with an https protocol. This needs to be set to True if SSL is provided by a proxy server (for example, Cloudflare). If the site is only served by https and you see errors like “403 forbidden CSRF origin didn’t match” set this to True. Defaults to False.

COLTRANE_CONTENT_DIRECTORY

The directory that should be used for markdown content. Relative to the base directory. Defaults to “content”.

COLTRANE_DATA_DIRECTORY

The directory that should be used for data. Relative to the base directory. Defaults to “data”.

COLTRANE_DATA_JSON5

Whether or not data files should be parsed as JSON5[#4]. Also requires installing with the json5 extras (e.g. poetry add coltrane -E json5 or pip install coltrane[json5]). Defaults to False.

COLTRANE_DISABLE_WILDCARD_TEMPLATES

To prevent wildcard templates from being served, set this to True. Defaults to False.

CACHE

The type of cache to use for coltrane. Acceptable options are: dummy[#5], memory[#6], filesystem[#7], memcache[#8], or redis[#9]. The default is dummy.

Note

filesystem, memcache, and redis options require CACHE_LOCATION to also be set.

CACHE_LOCATION

The location of the cache. Required for filesystem, memcache, and redis cache options. The filesystem cache requires an absolute path. The memcache and redis cache options include multiple cache servers in a commma-delimited list.

TIME_ZONE

The timezone of the server. Defaults to “UTC”.

Footnotes

[#1]
https://12factor.net/config

[#2]
https://docs.djangoproject.com/en/stable/ref/settings/#internal-ips

[#3]
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY

[#4]
https://json5.org

[#5]
https://docs.djangoproject.com/en/stable/topics/cache/#dummy-caching-for-development

[#6]
https://docs.djangoproject.com/en/stable/topics/cache/#local-memory-caching

[#7]
https://docs.djangoproject.com/en/stable/topics/cache/#filesystem-caching

[#8]
https://docs.djangoproject.com/en/stable/topics/cache/#memcached

[#9]
https://docs.djangoproject.com/en/stable/topics/cache/#redis

Settings

Settings for coltrane are specified in a COLTRANE dictionary in the settings.py file. All env settings are available to be set directly. Just remove the leading “COLTRANE_” from the environment name if applicable.

settings.py

...

Sample `coltrane` settings
COLTRANE = {
 "MISTUNE_PLUGINS": [
 "strikethrough",
 "footnotes",
 "table",
 "task_lists",
 "def_list",
 "abbr",
 "mark",
 "insert",
 "superscript",
 "subscript",
],
}

...

Note

coltrane settings can be passed into the initialize() method in app.py as kwargs.

existing app.py file
wsgi = initialize(MARKDOWN_EXTRAS=["metadata",], MISTUNE_PLUGINS=["table",])
rest of the app.py file

Keys

The keys below are specific to the COLTRANE dictionary settings.py. But, all env settings can be used.

MISTUNE_PLUGINS

The features that should be enabled when rendering markdown with mistune. A list of all available features: https://mistune.lepture.com/en/latest/plugins.html. The default extras are:

[
 "strikethrough",
 "footnotes",
 "table",
 "task_lists",
 "def_list",
 "abbr",
 "mark",
 "insert",
 "superscript",
 "subscript",
]

VIEW_CACHE

Caches the rendered HTML when dynamically rendering. Enabled by adding the SECONDS key to a VIEW_CACHE dictionary. Not used for static sites.

SECONDS

Specifies how long the markdown should be cached when Django is dynamically serving the markdown.

COLTRANE = {
 # other settings
 "VIEW_CACHE": {"SECONDS": 60 * 15},
}

CACHE_NAME

Specifies a name for the cache to use. Defaults to “default”.

COLTRANE = {
 # other settings
 "VIEW_CACHE": {"SECONDS": 60 * 15, "CACHE_NAME": "coltrane-view-cache"},
}

Footnotes

Build

coltrane will render the markdown files into HTML and stored the generated file in an output folder. This is similar to other static site generators like Jekyll or Hugo.

Record

The static site is built with the record command.

Footnotes

Installation

	poetry add coltrane or pip install coltrane

	Add coltrane to the list of INSTALLED_APPS in Django settings file

	Add path("", include("coltrane.urls")), to the bottom of the urlpatterns in the root urls.py (i.e. the urls.py specified by ROOT_URLCONF)

urls.py
from django.urls import include, path

urlpatterns = [
 ...
 path("", include("coltrane.urls")),
]

Footnotes

Integration

Linking

Django templates can link to coltrane markdown content with the url template tag and the slug of the markdown file.

<!-- this will link to a route which renders the /content/about.md markdown file -->
About

Sitemap

	Add "django.contrib.sitemaps", to INSTALLED_APPS in the settings file

	Make sure your TEMPLATES setting contains a DjangoTemplates backend whose APP_DIRS options is set to True.

	Add the following to urls.py

from django.contrib.sitemaps.views import sitemap
from coltrane.sitemaps import ContentSitemap

Make sure that the protocol is https
ContentSitemap.protocol = "https"

sitemaps = {
 "content": ContentSitemap,
}

urlpatterns = [
 # other URL paths here
 path(
 "sitemap.xml",
 sitemap,
 {"sitemaps": sitemaps},
 name="django.contrib.sitemaps.views.sitemap",
),
 # other URL paths here
]

More details are in the Django documentation for sitemaps[#1].

RSS

RSS requires an absolute URL so coltrane needs to know the domain for the site. The settings file needs to include something similar to the following.

COLTRANE = {
 "SITE_URL": "https://example.com",
}

URL Routing

	Add the following to urls.py

from django.urls import path
from coltrane.feeds import ContentFeed

urlpatterns = [
 path("rss.xml", ContentFeed()),
]

Footnotes

[#1]
https://docs.djangoproject.com/en/stable/ref/contrib/sitemaps/#initialization

Changelog

0.33.0

	Bump rich-click dependency and slightly better command aliases support.

0.32.1

	Parse JSON5 data as UTF-8.

0.32.0

	Add pubdate to RSS feed #61[#1] by Tobi-De[#2].

	Support setting a custom TIME_ZONE.

0.31.0

	Create example Dockerfile and gunicorn.conf.py files for easier deployments of coltrane apps.

	Add the ability to use JSON5[#3] for data files.

Breaking changes

	Remove loading data.json. All data should be in JSON files in the data directory.

	The default markdown renderer is now mistune instead of markdown2. The next version of coltrane will remove the option to use markdown2.

0.30.0

	Add COLTRANE_IS_SECURE env variable.

	Add django.middleware.gzip.GZipMiddleware, django.middleware.http.ConditionalGetMiddleware, django.middleware.csrf.CsrfViewMiddleware middlewares.

0.29.0

	django-unicorn[#4] integration.

	Fix: Passing INSTALLED_APPS into init now does not override the default apps.

0.28.0

	Add DISABLE_WILDCARD_TEMPLATES setting.

	Add data, slug, template, and now to direct HTML template for as much parity to markdown content as possible.

0.27.0

	Support directory wildcards.

	Add paths template tag.

0.26.0

	Ability to configure cache.

	Allow content or data directory to be specified #48[#5].

	Fix: Handle invalid JSON data #48[#6].

0.25.0

	If a markdown file with a slug cannot be found, look for a template with the same slug. Special case for *.html which can be a fall-back option to render for any slug.

	Add raise_404 template tag.

	Add last_path template tag.

0.24.0

	Support Django template tags with the mistune markdown renderer.

0.23.1

	Include extra files when building the static site.

0.23.0

	Add EXTRA_FILE_NAMES setting to support serving static files like robots.txt.

0.22.0

	Add support for rendering markdown with mistune. See MARKDOWN_RENDERED for how to enable. mistune will be the default renderer after 0.22.0 because it is 1) faster rendering markdown than markdown2, 2) enables new functionality like abbr, 3) fixed a bug in the generation of the tables of contents HTML, and 4) has a plugin architecture to add new features.

	Improve table of contents rendering for mistune.

0.21.0

	Add order_by to directory_contents templatetag.

	Fix TOC outputting ‘None’ when it should be None.

0.20.0

	Add to_html template tag. #37[#7] by Tobi-De[#8]

	Breaking change: change date to publish_date in metadata. #39[#9] by Tobi-De[#10]

	Breaking change: change SITE setting to SITE_URL.

	Automatically add verbatim templatetag around code fences.

0.19.0

	Update project name to coltrane.

0.18.3

	Fix bug where templatetags could not be loaded when the base directory was “.”.

0.18.2

	Add request to the template context when building static sites.

0.18.1

	Fix bug where static site path was incorrect.

0.18.0

	Add toc to the template context which provides a table of contents for the markdown.

0.17.0

	Fix bug with relative URLs when generating sitemap.xml

	Automatic generation of rss.xml file

0.16.1

	Create COLTRANE_SITE setting in .env file during create command

0.16.0

	Output an error if rendering fails during record command

	include_md template tag

	parent filter

	Serving of /sitemap.xml for standalone

	Automatic creation of sitemap.xml during record command

Breaking changes

	COLTRANE_SITE is required in .env file

0.15.1

	Include all frontmatter metadata in directory_contents template tag output

	Parse date frontmatter into datetime

	Parse draft frontmatter into boolean

0.15.0

	directory_contents template tag

	Add django-fastdev[#11] for more immediate feedback when an invalid template variable is used

	Show error message if a markdown file cannot be output to HTML

	Fix bug where index.md files in a sub-directory were not output correctly

0.14.0

	Add --output option to record command #19[#12] by stlk[#13]

	Nicer help output for CLI

0.13.1

	Add --threads option to record command

0.13.0

	Multithread record command

	Better console output for record command

0.12.0

	Fix elapsed time for record command

	More performant collection of markdown content files

	Don’t include markdown or data when collecting static files while running record

0.11.0

	Add --force option to create command

	Automatically refresh the browser when markdown content or data is saved

0.10.0

	Fix generating root index.md

0.9.0

	Add support for static files

	Add watchman support

	Add whitenoise for static handling

	Add --force option to record command

0.8.0

	Read INTERNAL_IPS from .env file

	Add now to template variables

	Include found template tags in built-ins

	Include humanize template tags in built-ins

0.7.0

	Support nested directories for content and data

	Update default markdown extras

0.6.0

	Add support for markdown frontmatter

	Support custom templates specified in markdown frontmatter

0.5.0

	Add build maangement command

	Store build manifest so that HTML doesn’t re-render if possible

	Loosen dependencies

0.4.0

	Unit tests, coverage, and fixes for mypy

0.3.0

	Bug fixes

0.2.0

	Bug fixes

0.1.0

	Basic Django app which renders markdown files at a URL

	Basic script

Footnotes

[#1]
https://github.com/adamghill/coltrane/pull/61

[#2]
https://github.com/Tobi-De

[#3]
https://json5.org

[#4]
https://www.django-unicorn.com

[#5]
https://github.com/adamghill/coltrane/issues/48

[#6]
https://github.com/adamghill/coltrane/issues/48

[#7]
https://github.com/adamghill/coltrane/pull/37

[#8]
https://github.com/Tobi-De

[#9]
https://github.com/adamghill/coltrane/pull/37

[#10]
https://github.com/Tobi-De

[#11]
https://github.com/boxed/django-fastdev

[#12]
https://github.com/adamghill/coltrane/issues/19

[#13]
https://github.com/stlk

Index

 _images/render-build-command.png
Build Command pip install poetry && poetry install & poetry run ’

This command runs in the root directory of your repository when a new version of Cancel
your code is pushed, or when you deploy manually. It is typically a script that installs
libraries, runs migrations, or compiles resources needed by your app.

_images/render-python-version.png
Events Environment Redirects/Rewrites Headers PRs Sharir

Environment Variables

Use environment variables to store API keys and other configuration values
variables, for example with os.getenv() in Python or process.env in Node.

Key Value

PYTHON_VERSION 3.9.7

nav.xhtml

 Table of Contents

 		
 Introduction

_static/file.png

_static/minus.png

_static/plus.png

